Code: 20EC3403

II B.Tech - II Semester – Regular / Supplementary Examinations MAY - 2024

MICROPROCESSOR & MICROCONTROLLERS (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max. Marks		
					Marks		
	UNIT-I						
1	a)	List the basic components of a	L1	CO1	7 M		
		microprocessor and their functions.					
	b)	Compare CISC and RISC systems in terms	L4	CO1	7 M		
		of architecture, instruction set, and					
		performance.					
OR							
2	a)	Develop a strategy to Optimize Cache	L3	CO1	7 M		
		Memory in a high-performance computing					
		environment.					
	b)	Analyze the evolution of microcontrollers	L4	CO1	7 M		
		from 4-bit to 8-bit architectures,					
		highlighting the impact on instruction set					
		complexity, data processing capabilities,					
		and diversified applications.					
		mid di distino approducion					

		UNIT-II					
3	a)	Explain the concept of register organization	L3	CO2	7 M		
		in the 8086.					
	b)	What is the purpose of the Read Cycle	L2	CO2	7 M		
		Timing Diagram in the minimum mode					
		configuration of the 8086 microprocessors,					
		illustrate?					
OR							
4		amine the pin configuration of the 8086	L5	CO2	14 M		
		croprocessor to assess potential limitations or					
	con	straints in system design.					
	F	UNIT-III	T	1 1			
5	a)	List key features of the MSP430	L1	CO3	7 M		
		microcontroller.	_				
	b)	Explain the role of registers in the operation	L2	CO3	7 M		
		of a 16-Bit RISC CPU.					
		OR	Г	1 T			
6	a)	Evaluate and compare different target	L3	CO3	7 M		
		applications to determine which ones would					
		benefit most from MSP430's low power					
		features.	_				
	b)		L4	CO3	7 M		
		low-power practices in MSP430 - based					
		designs and assess their impact on overall					
		system performance. Also explain the					
		memory sub system of MSP430 micro					
		controllers.					

		UNIT-IV					
7	a)	Explain the process of setting up and handling Watchdog Timer interrupts in MSP430 microcontrollers. What are the key steps involved in configuring interrupt service routines for WDT events?	L2	CO4	7 M		
	b)	How Real Time clock of MSP430 Microcontrollers are used in DAC.	L3	CO4	7 M		
	OR						
8	a)	Describe the DMA Registers, providing concise information on their key attributes and functions.	L2	CO4	7 M		
	b)	Discuss the techniques used to interface LCD with MSP430 microcontrollers.	L2	CO4	7 M		
	UNIT-V						
9	a)	Evaluate the implications of using different addressing modes in MSP430 programming.	L5	CO5	7 M		
	b)	Explain the purpose of logical instructions in MSP430 programming. Provide examples of logical instructions and describe their operation briefly.	L2	CO5	7 M		
OR							
10	a)	How single operand core instructions are used to perform a bitwise complement operation on a register?	L3	CO5	7 M		
	b)	Explain program flow control instructions in MSP430 programming.	L2	CO5	7 M		